pctechguide.com

  • Home
  • Guides
  • Tutorials
  • Articles
  • Reviews
  • Glossary
  • Contact

IEEE 802.11g

2001 was a tough year for the proposed 802.11g standard, with endless disagreements amongst the IEEE members over how it should be implemented and a real threat that it might be abandoned altogether. Towards the end of the year a compromise was finally worked out, effectively combining elements from the principal two independent proposals that were originally considered for the 802.11g standard. Final approval won’t be granted until working versions have been tested and 90% of the voting body votes affirmatively. This is not expected to occur in before early 2003.

By May 2001 the field of candidates in the selection process had been narrowed to two; Texas Instruments’ Packet Binary Convolutional Coding (PBCC-22) proposal – offering 22 Mbit/s operation in the 2.4GHz band and seamless compatibility with existing Wi-Fi devices – and Intersil Corporation’s Complimentary Code Keying (CCK) proposal – to make use of 802.11a-like OFDM modulation to attain data rates of up to 33 Mbit/s.

In the event, neither proposal was able to gain the necessary level of support. Each of them had called for true 802.11a OFDM operation in the 2.4GHz band as an optional mode to the primary proposed modulation, either PBCC-22 or CCK-OFDM. In fact, the agreed draft standard has two mandatory modes and two optional modes, but the mandatory modulation/access modes are the same CCK (Complementary Code Keying) mode used by 802.11b (hence the compatibility with Wi-Fi) and the OFDM mode used by 802.11a (but deployed in 2.4GHz frequency band). The former supports 11 Mbit/s and the latter has a maximum of 54 Mbit/s. Both PBCC-22 and CCK-OFDM are relegated to the status of optional modes.

Since the draft 802.11g standard combines fundamental features from both 802.11a and 802.11b, it lends itself to the development of devices that can interoperate with technology based on both of the previous versions of the specification. This solves many migration path questions of users who already installed 802.11b LANs and wanted to have higher data rates, but were unsure since 802.11a was not compatible with their existing network. This can be likened to the evolution of wired Ethernet technology when Ethernet devices began supporting the 10 and 100 Mbit/s Ethernet specifications in dual-mode 10/100 devices to allow seamless operation in either mode without user intervention.

So whilst 802.11b provides a much clearer bridge between the 802.11a and 802.11b standards – plus a straightforward means for the future development of true multi-mode/RF devices – the obvious downside is that it means that the already congested 2.4GHz frequency band will get even more crowded. However, the fact is that one of the major reasons why the 802.11b standard enjoyed international acceptance was because the 2.4GHz band is almost universally available, and where there are conflicts vendors can implement frequency-selection software that prevents a radio from operating at illegal frequencies. By contrast, the 5GHz spectrum does not share this luxury.

The fact that parts of the 5GHz band are used by military applications, such as high-energy radar, has resulted in several major global markets – including Western Europe and Japan – placing regulatory restrictions on the commercial use of the band. The Japanese market shares only the lower 100MHz of the frequency spectrum, which means 802.11a applications in Japan will face more contention. In Europe, the lower 200MHz are common with the FCC’s 5GHz allotment, but the higher 5.725GHz to 5.825GHz band reserved for outdoor applications are occupied. Even in the USA – where 802.11a enjoys relatively clear-channel operation – there are questions concerning security risks for military operations.

Given that the draft standard incorporates what was formerly proprietary technologies, already at an advanced stage of development, it is possible that 802.11g solutions could begin to appear on the market as early as late-2002. However – returning to the parallel with 10/100 Mbit/s wired Ethernet – the faster standard didn’t take off until bridging products were available, and the same can be expected in the wireless networking arena. If these can be developed in a similar timeframe – possibly solving the Bluetooth problem along the way – then 2003 could be the dawn of a high-speed wireless networked world!2001 was a tough year for the proposed 802.11g standard, with endless disagreements amongst the IEEE members over how it should be implemented and a real threat that it might be abandoned altogether. Towards the end of the year a compromise was finally worked out, effectively combining elements from the principal two independent proposals that were originally considered for the 802.11g standard. Final approval won’t be granted until working versions have been tested and 90% of the voting body votes affirmatively. This is not expected to occur in before early 2003.

By May 2001 the field of candidates in the selection process had been narrowed to two; Texas Instruments’ Packet Binary Convolutional Coding (PBCC-22) proposal – offering 22 Mbit/s operation in the 2.4GHz band and seamless compatibility with existing Wi-Fi devices – and Intersil Corporation’s Complimentary Code Keying (CCK) proposal – to make use of 802.11a-like OFDM modulation to attain data rates of up to 33 Mbit/s.

In the event, neither proposal was able to gain the necessary level of support. Each of them had called for true 802.11a OFDM operation in the 2.4GHz band as an optional mode to the primary proposed modulation, either PBCC-22 or CCK-OFDM. In fact, the agreed draft standard has two mandatory modes and two optional modes, but the mandatory modulation/access modes are the same CCK (Complementary Code Keying) mode used by 802.11b (hence the compatibility with Wi-Fi) and the OFDM mode used by 802.11a (but deployed in 2.4GHz frequency band). The former supports 11 Mbit/s and the latter has a maximum of 54 Mbit/s. Both PBCC-22 and CCK-OFDM are relegated to the status of optional modes.

Since the draft 802.11g standard combines fundamental features from both 802.11a and 802.11b, it lends itself to the development of devices that can interoperate with technology based on both of the previous versions of the specification. This solves many migration path questions of users who already installed 802.11b LANs and wanted to have higher data rates, but were unsure since 802.11a was not compatible with their existing network. This can be likened to the evolution of wired Ethernet technology when Ethernet devices began supporting the 10 and 100 Mbit/s Ethernet specifications in dual-mode 10/100 devices to allow seamless operation in either mode without user intervention.

So whilst 802.11b provides a much clearer bridge between the 802.11a and 802.11b standards – plus a straightforward means for the future development of true multi-mode/RF devices – the obvious downside is that it means that the already congested 2.4GHz frequency band will get even more crowded. However, the fact is that one of the major reasons why the 802.11b standard enjoyed international acceptance was because the 2.4GHz band is almost universally available, and where there are conflicts vendors can implement frequency-selection software that prevents a radio from operating at illegal frequencies. By contrast, the 5GHz spectrum does not share this luxury.

The fact that parts of the 5GHz band are used by military applications, such as high-energy radar, has resulted in several major global markets – including Western Europe and Japan – placing regulatory restrictions on the commercial use of the band. The Japanese market shares only the lower 100MHz of the frequency spectrum, which means 802.11a applications in Japan will face more contention. In Europe, the lower 200MHz are common with the FCC’s 5GHz allotment, but the higher 5.725GHz to 5.825GHz band reserved for outdoor applications are occupied. Even in the USA – where 802.11a enjoys relatively clear-channel operation – there are questions concerning security risks for military operations.

Given that the draft standard incorporates what was formerly proprietary technologies, already at an advanced stage of development, it is possible that 802.11g solutions could begin to appear on the market as early as late-2002. However – returning to the parallel with 10/100 Mbit/s wired Ethernet – the faster standard didn’t take off until bridging products were available, and the same can be expected in the wireless networking arena. If these can be developed in a similar timeframe – possibly solving the Bluetooth problem along the way – then 2003 could be the dawn of a high-speed wireless networked world!

  • GSM Technology
  • GPRS Technology
  • 3G Technology
  • WAP Technology
  • Bluetooth technology
  • GPS Technology
  • Galileo
  • IEEE 802.11b
  • IEEE 802.11a
  • HiperLAN2
  • IEEE 802.11g
  • WiFi Access
  • WiMAX Technology
  • HSDPA
  • IEEE 802.11n

Filed Under: Mobile Communications

Latest Articles

Transfer Files From Old Computer to New Computer

When doing a PC to PC file transfer from your old computer to the new one you first need to decide on what files you need to copy over to your new computer. Most likely you will want most of your documents, pictures, music and videos. With a FileCenter's software it's easier to scan, manage and find … [Read More...]

Enable Two Factor Authentication for Google Account

Protecting your online accounts is becoming more important. Everyday we hear stories of accounts being hacked and broken into. Many times these accounts can contain sensitive information. Or, they can contain useful bits of information that a hacker or identity thief can use to launch more thorough … [Read More...]

How to Lock Your Mac and Make it Secure

PC security is a topic that many of us do not think about. And, many Mac users believe that their PC is invincible when it comes to security. The truth is that if you do not properly lock your computer up when it is not in use then you are leaving your files open to people to do what they will with … [Read More...]

Revolutionize Your Internet Experience with Orbi 960 – The Ultimate WiFi System

In a world where seamless connectivity is essential, slow and unreliable internet connections are a major problem. Whether you are running a business, … [Read More...]

Do You Need a VPN When Trading Cryptocurrency?

There’s no doubt that the biggest global industries in 2023 are tech-driven, while there remains a significant crossover between many of these … [Read More...]

Goodbye Bitcoin: the 3 alternative cryptocurrencies that have great upside potential, according to experts

Bitcoin has been a very lucrative investment for people that got into it early. One report from The Motley Fool pointed out that $10 of bitcoin … [Read More...]

Self-driving cars face their Achilles’ heel and may be targets of hackers

The market for self-driving cars is booming. Customers spent $22.22 billion on these autonomous vehicles in 2021 and they will likely spend more in … [Read More...]

How to avoid scams with bitcoin and other cryptocurrencies

Cryptocurrencies got a bad reputation when scams multiplied like ants on a piece of cake. Even today many people associate bitcoin and other … [Read More...]

WHAT IS CLOUD COMPUTING AND WHAT ARE ITS MAIN BENEFITS?

Users are Increasingly using cloud computing to store their information, which is replacing local storage. The business digitization process goes … [Read More...]

Guides

  • Computer Communications
  • Mobile Computing
  • PC Components
  • PC Data Storage
  • PC Input-Output
  • PC Multimedia
  • Processors (CPUs)

Recent Posts

Keep Your Browsers Private With These Extensions

Privacy is a big concern for people online these days. Everyday we seem to be hearing about some new invasion of privacy centered around the Internet. … [Read More...]

PlayRenfe: how to connect to WiFi on Renfe trains and on which trains it is available

We are going to explain how to connect to WiFi on Renfe trains, so you can have a stable connection when traveling by train. No matter how many … [Read More...]

AI-Driven Software Improves Trading Strategies for Investors

Artificial intelligence technology is changing the state of modern finance. A growing number of investors are utilizing AI to improve the … [Read More...]

[footer_backtotop]

Copyright © 2023 About | Privacy | Contact Information | Wrtie For Us | Disclaimer | Copyright License | Authors