pctechguide.com

  • Home
  • Guides
  • Tutorials
  • Articles
  • Reviews
  • Glossary
  • Contact

Illustrated Intel Pentium Tillamook CPU technology guide

Conspicuous by its absence from Intel’s launch of MMX at the beginning of 1997 was a 200MHz version of the Pentium MMX for notebooks. This omission was addressed before the year was out, however, with the announcement of its latest mobile processor codenamed Tillamook, after a small town in Oregon. The new processors were originally available at speeds of 200MHz and 233MHz – with a 266MHz version following early in 1998.

The Tillamook was one of the first processors to be built on an Intel-developed pop-out Mobile Module for notebooks, called MMO. The module held the processor, 512KB of secondary cache, a voltage regulator to buffer the processor from higher voltage components, a clock, and the new 430TX PCI Northbridge chipset. It was connected to the motherboard by a single array of 280 pins, similar to the Pentium II’s SEC cartridge.

On the chip itself, the biggest difference was in the 0.25-micron process: down from 0.35 microns in the older-style mobile Pentium chips, and much smaller than the 0.35-micron process used on desktop Pentiums. The lower micron value had a knock-on effect on the speed and the voltage.

As the transitions (the electrical pulses of ones and zeros) occurring on the processor are physically closer together, the speed is automatically increased. Intel claimed a performance increase of 30%. As the transitions are closer together, the voltage has to be reduced to avoid damage caused by a strong electrical field. Previous versions of the Intel mobile Pentium had 2.45V at the core but on Tillamook this was reduced to 1.8V. A voltage regulator was needed to protect the chip from the PCI bus and the memory bus, both of which ran at 3.3V.

The mobile 200MHz and 233MHz CPUs generated 3.4 watts and 3.9 watts TDP (thermal design power) typical respectively. These improvements represented nearly a 50% decrease in power consumption over the previous generation 166MHz mobile Pentium processor with MMX technology. This was just as well, as many of the notebooks using this chip were driving energy-sapping 13.3in and 14.1in screens intended for graphics-intensive applications. On the plus side, a lower voltage also meant lower heat emissions – a real problem with desktop chips.

The processor was sold to manufacturers either on its own in a Tape Carrier Package (TCP) format, or mounted on a Mobile Module (MMO). The module held the processor, 512KB of L2 cache, a VRM to buffer the processor from higher voltage components, a clock, and the new 430TX PCI Northbridge chipset. The module was connected to the motherboard by a single array of 280 pins, just as on the Pentium II’s SEC cartridge.

Tillamook

There were various reasons for putting the chip on a module. From an engineering point of view, it made it easier to combat the two main problems which arose in the area around the processor; namely heat and connections. The voltage regulator and the lower voltage of the chip helped dissipate the heat. A temperature sensor was located right by the processor, which triggered whatever heat dissipation method the manufacturer had built in. The 430TX chipset then bridged the gap between the processor and the other components, communicating with a second part of the chipset on the motherboard which controlled the memory bus and other controllers such as the graphics and audio chips.

Intel maintained that the MMO made life easier for the notebook OEMs, which could now devote more time to improving the other features of notebooks rather than having to spend too much R&D time and effort on making their systems compatible with each new processor. And, of course, as most processors required a new chipset to support their functionality, manufacturers were spared the dual problem of redesigning motherboards for the purpose and of holding obsolete stock when the new processors came in.

On the flipside, it neatly cut off the route for Intel’s competitors by forcing notebook OEMs to go with Intel’s proprietary slot. However, the much-vaunted idea that the module meant easy upgrading for the consumer was little more than wishful thinking. In practice, it was far more complicated than just opening up the back and slotting in a new SEC, as in a Pentium II desktop. Its size was also a downside. At 4in (101.6mm) L x 2.5in (63.5mm) W x 0.315in (8mm) H (0.39in or 10mm high at the connector), the module was too bulky to fit into the ultra-slim notebooks of the day.

January 1999 saw the family of mobile Pentium processors with MMX technology completed with the release of the 300MHz version.

Filed Under: CPU Technology

Latest Articles

CD-ROM DMA vs. PIO Mode

Traditionally, CD-ROM drives have used Programmable Input Output (PIO) rather than Direct Memory Access (DMA) for data transfer. This was favoured for the earlier designs because hardware implementation is simpler and … [Read More...]

What is Intel’s 925X PCI Express Chipset

In the summer of 2004 Intel introduced a new family of chipsets that they claimed brought the most profound changes in PC platform architecture in more than a decade. The relative positioning of the chipsets - codenamed Alderwood and Grantsdale - is similar to that of the Canterwood and … [Read More...]

How to Move Your Store Folder (Outlook Express)

Every new generation of Outlook Express just keeps getting better and better. It seems that the designers of the beloved software listen well to every complaint or suggestion from the public because each time a new Outlook comes on the market it is vastly improved. OE 6 was the first incarnation … [Read More...]

Why Cross-Chain Trading Is the Future of Crypto Investing?

The rapid growth and evolution of the cryptocurrency market have opened up exciting opportunities for investors. Within this dynamic landscape, … [Read More...]

Revolutionize Your Internet Experience with Orbi 960 – The Ultimate WiFi System

In a world where seamless connectivity is essential, slow and unreliable internet connections are a major problem. Whether you are running a business, … [Read More...]

Do You Need a VPN When Trading Cryptocurrency?

There’s no doubt that the biggest global industries in 2023 are tech-driven, while there remains a significant crossover between many of these … [Read More...]

Goodbye Bitcoin: the 3 alternative cryptocurrencies that have great upside potential, according to experts

Bitcoin has been a very lucrative investment for people that got into it early. One report from The Motley Fool pointed out that $10 of bitcoin … [Read More...]

Self-driving cars face their Achilles’ heel and may be targets of hackers

The market for self-driving cars is booming. Customers spent $22.22 billion on these autonomous vehicles in 2021 and they will likely spend more in … [Read More...]

How to avoid scams with bitcoin and other cryptocurrencies

Cryptocurrencies got a bad reputation when scams multiplied like ants on a piece of cake. Even today many people associate bitcoin and other … [Read More...]

Guides

  • Computer Communications
  • Mobile Computing
  • PC Components
  • PC Data Storage
  • PC Input-Output
  • PC Multimedia
  • Processors (CPUs)

Recent Posts

Kaspersky Password Manager Review

[starreviewmulti id=3 tpl=20] PROS: Kaspersky Password Manager saves all your computer passwords into one database. CONS: You will still have … [Read More...]

Understanding the Nuances and Nifty Features of Insurance Comparison Apps

Big data is changing many fields. Manufacturers are using smart technology to facilitate automation. However, insurer companies are benefiting more … [Read More...]

Intel Pentium 4-M mobile CPU guide

Intel's Pentium 4-M CPU came to market in the spring of 2002 at a clock frequency of up to 1.7GHz. The CPU's Micro FCPGA … [Read More...]

[footer_backtotop]

Copyright © 2023 About | Privacy | Contact Information | Wrtie For Us | Disclaimer | Copyright License | Authors