pctechguide.com

  • Home
  • Guides
  • Tutorials
  • Articles
  • Reviews
  • Glossary
  • Contact

Illustrated Intel Pentium Tillamook CPU technology guide

Conspicuous by its absence from Intel’s launch of MMX at the beginning of 1997 was a 200MHz version of the Pentium MMX for notebooks. This omission was addressed before the year was out, however, with the announcement of its latest mobile processor codenamed Tillamook, after a small town in Oregon. The new processors were originally available at speeds of 200MHz and 233MHz – with a 266MHz version following early in 1998.

The Tillamook was one of the first processors to be built on an Intel-developed pop-out Mobile Module for notebooks, called MMO. The module held the processor, 512KB of secondary cache, a voltage regulator to buffer the processor from higher voltage components, a clock, and the new 430TX PCI Northbridge chipset. It was connected to the motherboard by a single array of 280 pins, similar to the Pentium II’s SEC cartridge.

On the chip itself, the biggest difference was in the 0.25-micron process: down from 0.35 microns in the older-style mobile Pentium chips, and much smaller than the 0.35-micron process used on desktop Pentiums. The lower micron value had a knock-on effect on the speed and the voltage.

As the transitions (the electrical pulses of ones and zeros) occurring on the processor are physically closer together, the speed is automatically increased. Intel claimed a performance increase of 30%. As the transitions are closer together, the voltage has to be reduced to avoid damage caused by a strong electrical field. Previous versions of the Intel mobile Pentium had 2.45V at the core but on Tillamook this was reduced to 1.8V. A voltage regulator was needed to protect the chip from the PCI bus and the memory bus, both of which ran at 3.3V.

The mobile 200MHz and 233MHz CPUs generated 3.4 watts and 3.9 watts TDP (thermal design power) typical respectively. These improvements represented nearly a 50% decrease in power consumption over the previous generation 166MHz mobile Pentium processor with MMX technology. This was just as well, as many of the notebooks using this chip were driving energy-sapping 13.3in and 14.1in screens intended for graphics-intensive applications. On the plus side, a lower voltage also meant lower heat emissions – a real problem with desktop chips.

The processor was sold to manufacturers either on its own in a Tape Carrier Package (TCP) format, or mounted on a Mobile Module (MMO). The module held the processor, 512KB of L2 cache, a VRM to buffer the processor from higher voltage components, a clock, and the new 430TX PCI Northbridge chipset. The module was connected to the motherboard by a single array of 280 pins, just as on the Pentium II’s SEC cartridge.

Tillamook

There were various reasons for putting the chip on a module. From an engineering point of view, it made it easier to combat the two main problems which arose in the area around the processor; namely heat and connections. The voltage regulator and the lower voltage of the chip helped dissipate the heat. A temperature sensor was located right by the processor, which triggered whatever heat dissipation method the manufacturer had built in. The 430TX chipset then bridged the gap between the processor and the other components, communicating with a second part of the chipset on the motherboard which controlled the memory bus and other controllers such as the graphics and audio chips.

Intel maintained that the MMO made life easier for the notebook OEMs, which could now devote more time to improving the other features of notebooks rather than having to spend too much R&D time and effort on making their systems compatible with each new processor. And, of course, as most processors required a new chipset to support their functionality, manufacturers were spared the dual problem of redesigning motherboards for the purpose and of holding obsolete stock when the new processors came in.

On the flipside, it neatly cut off the route for Intel’s competitors by forcing notebook OEMs to go with Intel’s proprietary slot. However, the much-vaunted idea that the module meant easy upgrading for the consumer was little more than wishful thinking. In practice, it was far more complicated than just opening up the back and slotting in a new SEC, as in a Pentium II desktop. Its size was also a downside. At 4in (101.6mm) L x 2.5in (63.5mm) W x 0.315in (8mm) H (0.39in or 10mm high at the connector), the module was too bulky to fit into the ultra-slim notebooks of the day.

January 1999 saw the family of mobile Pentium processors with MMX technology completed with the release of the 300MHz version.

Filed Under: CPU Technology

Latest Articles

What to Do When Windows Stops Working (Part 2: Hardware Issues)

We recently covered some tips on what to do when Windows stops working. We wanted to break it up and share some of the more advanced tips in a separate post. This post is going to focus specifically on hardware problems that might arise. Keep reading to get started! In the center of the … [Read More...]

share mac with windows

Sharing Folders from Mac OS X to Windows

People that are accustomed to working in Windows environments often cringe when having to work with Mac computers. But, sharing folders from OS X with Windows computers is not the pain that it used to be. OS X has native support for the Microsoft Server Message Block. This means you can configure a … [Read More...]

Correct 400 Bad Request Error

The 400 Bad Request error is one of the more common HTTP status codes that you will encounter.  It basically means that the server does not understand the request that you are making to it. The wording of the error is different depending on the web server you are trying to connect to. Below … [Read More...]

Gaming Laptop Security Guide: Protecting Your High-End Hardware Investment in 2025

Since Jacob took over PC Tech Guide, we’ve looked at how tech intersects with personal well-being and digital safety. Gaming laptops are now … [Read More...]

20 Cool Creative Commons Photographs About the Future of AI

AI technology is starting to have a huge impact on our lives. The market value for AI is estimated to have been worth $279.22 billion in 2024 and it … [Read More...]

13 Impressive Stats on the Future of AI

AI technology is starting to become much more important in our everyday lives. Many businesses are using it as well. While he has created a lot of … [Read More...]

Graphic Designers on Reddit Share their Views of AI

There are clearly a lot of positive things about AI. However, it is not a good thing for everyone. One of the things that many people are worried … [Read More...]

Redditors Talk About the Impact of AI on Freelance Writers

AI technology has had a huge impact on our lives. A 2023 survey by Pew Research found that 56% of people use AI at least once a day or once a week. … [Read More...]

11 Most Popular Books on Perl Programming

Perl is not the most popular programming language. It has only one million users, compared to 12 million that use Python. However, it has a lot of … [Read More...]

Guides

  • Computer Communications
  • Mobile Computing
  • PC Components
  • PC Data Storage
  • PC Input-Output
  • PC Multimedia
  • Processors (CPUs)

Recent Posts

CD-ROM Yellow Book

The Yellow Book was written in 1984 to describe the extension of CD to store computer data, i.e. CD-ROM (Read Only … [Read More...]

P2P Networking

By early 2000 a revolution was underway in an entirely new form of peer-to-peer computing. Sparked by the phenomenal success … [Read More...]

Transferring Image Files from Your Cell Phone Without Cables or Email

You don't have a cable available to transfer the photos from your cell phone to your computer? You don't feel comfortable sending them through your … [Read More...]

[footer_backtotop]

Copyright © 2025 About | Privacy | Contact Information | Wrtie For Us | Disclaimer | Copyright License | Authors